

CII 24th NATIONAL AWARD FOR EXCELLENCE IN ENERGY MANAGEMENT 2023

Honeywell International India Pvt Ltd

Pace City II, Sector 36, Village Mohammedpur Jharsa, Gurgaon – 122004, Haryana – India.

Date: 13th, 14th and 15th August 2023

Honeywell

SUBRATA BALIARSINGH

- DIRECTOR IFM - INDIA

RASHI KAUSHIK, VINOD VATSA, MUKESH BHADA,

- OPERATIONS LEADER

VIJAYAKUMAR SHOLAPUR

- FACILITIES & ENERGY LEAD - INDIA

HONEYWELL INDIA

8 Decade legacy

\$1B

Domestic sales and exports

3000+

Products, solutions, applications engineered in India

4

Technology development centers

- Bengaluru
- Madurai
- Hyderabad
- Gurugram

3

•

Manufacturing centers

- Gurugram
- Dehradun
- Pune

20

Facilities in major cities

- Pune
- Bengaluru
- Gurugram
- Chennai
- Dehradun
- Mumbai
- Kolkata
- Madurai
- Hyderabad
 - Vadodara

NET ZERO COMMITMENT- HONEYWELL SUSTAINABILITY POLICY

Honeywell

Sustainable Opportunity Policy Honeywell's Commitment to Health, Safety and the Environment

By integrating health, safety and environmental considerations into all aspects of our business, we protect our employees and contractors, our communities and the environment, achieve sustainable growth and accelerated productivity, drive compliance with all applicable regulations and develop technologies that expand the sustainable capacity of our world. Our health, safety and environmental management systems reflect our values and help us meet our business objectives.

- We protect the safety and health of our employees and contractors, and minimize the environmental footprint of our operations through efforts to prevent illness, injury and pollution.
- We actively promote and develop opportunities for expanding sustainable capacity by increasing energy and water efficiency, improving security and safety, and reducing emissions of harmful pollutants.
- We are committed to compliance with all of our health, safety, environmental and legal requirements everywhere we operate.
- Our commitment to health, safety and the environment is an integral aspect of our design of products, processes and services, and of the lifecycle management of our products.
- Our management systems apply a global standard that provides protection of both human health and the environment during normal and emergency situations.
- We identify, control and endeavor to reduce hazards and associated risk (to employees and contractors), emissions, waste and inefficient use of resources, including energy and water.
- We are open with stakeholders and work within our communities to advance laws, regulation and practices that safeguard the public.
- We abide by the company's own strict standards in cases where local laws are less stringent.
- Our senior leadership and individual employees are engaged in aspects of health, safety and the environment and are accountable for their role in meeting our commitments.
- We measure and periodically review our progress and strive for continuous improvement.

These are our commitments to health, safety, and the environment, and to creating Sustainable Opportunity everywhere we operate.

V- e kiler.

Vimal Kapur CEO

Revised: 16 June 2023 Version: 8 Document Number: 3-1101-X10

CORPORATE ENERGY & SUSTAINABILITY TEAM

Executive Sponsorship

Senior Leadership Support Evan van Hook - Chief Sustainability Officer and Nate Johnson - V.P. Global Real Estati

Driving Performance & Continuous Improvement

HSEPS

Cathy Gallagher

Reduce Scope 03 emissions 23 % within the same timeframe.

- Investment in Energy savings projects
- **Improve** Energy Efficiency by 10 %
- Conversion to renewable energy sources

EMEA

Steph Temme

THE ENVIRONMENT

Our commitment to being environmentally responsible is reflected in the extensive work we do to reduce greenhouse gas (GHG) emissions, increase energy efficiency, conserve water, minimize waste, and drive efficiency throughout our operations. Honeywell also champions responsible remediation projects and efforts to make our products safer and more sustainable.

OUR ENVIRONMENTAL GOALS

We are proud of the environmental improvements we have achieved to date and continue in our commitment to make our businesses more sustainable.

- Pledge to be carbon neutral in our facilities and operations¹ by 2035
- Commitment to set a science-based target aligned with the Science Based Targets initiative (SBTi)
- Five-year "10-10-10" target to, by 2024:
 - Reduce global Scope 1 and Scope 2 GHG emissions intensity by an additional 10% from 2018 levels
 - Deploy at least 10 renewable energy opportunities
 - Achieve certification to ISO's 50001 Energy Management Standard at 10 facilities

GOAL	TIMEFRAME	STATUS
30% GHG reduction ¹	2007 – 2011 (2004 baseline)	Exceeded
20% Energy efficiency improvement	2007 – 2011 (2004 baseline)	Exceeded
15% GHG intensity reduction ¹	2012 – 2016 (2011 baseline)	Achieved 3 years early
10% GHG intensity reduction ¹	2014 – 2018 (2013 baseline)	Exceeded
10% GHG intensity reduction ¹	2019 – 2023 (2018 baseline)	On track
10 Renewable energy opportunities		On track
10 Certified ISO 50001 sites		Exceeding

*Scope 1 and Scope 2

HONEYWELL COMMITTED TO BE CARBON NEUTRAL BY 2035

01 facility certified 01 facility in progress

01 facility certified

02 facilities certified

Scope 1 Abatement plan

- Existing DG' conversion to dual-fuel system.
- Leveraging Battery Energy Storage System
- Leveraging Induction based cooking system
- Vehicle fleet engagement model

Scope 2 Abatement

- Offsite and onsite –Green power through PPA
- In-house solar power plant.

OF THE WORLD'S GREENHOUSE GAS EMISSIONS

~ 30% = Agri, Forest, Land use, Others ~70% = Industry, Tpt, Building, Electricity / Heat

SITE INFRA - HTSL GURUGRAM

Facility details

• Owner

•

- Year of operation
- Built up area
- Building
- Seating Capacity : 480
- Incoming Power Supply : 11 kV
- Sanctioned Demand : 3.60 MVA
 - Transformer Capacity : 1.50 MVA x 3 nos. ;
 - : 0.80 MVA x 1 no.

: 1,621 TR cumulative.

: 2.70 MVA

- Diesel Generator Capacity : 4.735 MVA
 - UPS Capacity
- Chiller Capacity

Annual energy use is around 6.76 million kWh with the spend of INR 5.76 crores, including diesel cost during FY 2022 - 23

- : Owned
- : 2008
 - : 206,925 sq.ft
- : 02

Plants 40,000 sq. ft. & Manufacturing 46,000sq.ft. & operates 24 X 7

Labs &

BUILDING SALIENT FEATURES

SUSTAINABILTY CONCEPTS CONSIDERED IN BUILDING

Priority to passive design to reduce energy demands

- 1. Compact envelope shape
- 2. Solar protection
- 3. Under roof thermal insulation
- 4. Air tightness

Include passive

- 1. UV protected glazing
- 2. 50 % access to day-light exposure

Occupant comfort and well being

- 1. Achieving indoor comfort requirements (visual / thermal / acoustic)
- 2. Maintaining good IAQ (indoor air quality)

More sustainable elements

- 1. Reduced heat island more than- 2/3rd of the building surrounding area covered with trees and plantation.
- 2. Solar Power plant of 345 kWp installed and operational
- 3. Zero liquid discharge

<u>certified</u>

Honeywell Confidential - ©2022 by Honeywell International Inc. All rights reserved.

ENERGY PROFILE – UTILITY WISE OVERVIEW

S No	Utility	Energy Consumption, kWh	Energy Share %
1	HVAC	4,000,997	56.2%
2	Process Chiller	43,685	0.6%
3	Production Floor - Machine Shop	178,246	2.5%
4	Air Compressors	221,038	3.1%
5	UPS's - Lab, Plants, AHU, Chiller, WS & Lighting	1,882,864	26.5%
6	Fire Pump Room	37,423	0.5%
7	ETP & STP	26,220	0.4%
8	Lighting & Raw Power	725,873	10.2%
	Total	7,116,345	100.0

The R&D section has once through Air conditioning system, which uses 100 % fresh air.

The facility practices 20 ACPH for pilot plant area and 12 ACPH for lab area.

Lab load contributes for significant Energy consumption, nearly 35.0 % (including HVAC load as well)

ENERGY CONSUMPTION & ENERGY PERFORMANCE INDEX 2020 - 2023

Year	Source of Energ	y – Energy Cons	umption, kWh	Total Energy Consumption	Energy Cost	Area	Energy Performance Index
rear	Grid – EB	DG	Inhouse Solar	Lakhs kWh	INR	Sq.m	kWh / Sq.m
FY 2020 – 21	5,530,999	104,157	217,796	58.53	58,653,516.02	19,145	305.72
FY 2021 – 22	6,501,136	83,661	192,863	67.78	57,458,620.54	19,145	354.02
FY 2022 – 23	6,429,575	66,905	265,509	67.62	57,636,863.65	19,145	353.20

The year 2019 – 20 the consumption 7,874,148 units and EPI was at 413.45 and has been reduced significantly in the following years. Couple of Energy savings initiatives implemented through operational control measures.

Note :

COMPARISON SEC WITH INTERNAL & NATIONAL BENCHMARKING

Internal Benchmarking	Location	Zone		SEC (kWh / m² / y)		
Honeywell	Gurugram	Composite			353.2	
Honeywell	Campus 02, Bangalore	Composite		251.1		
Denehmerking	Deference	Reference		SEC(kWh / m² / y)		
вепсптагкіпд	Reference			dard	Actual	
National level	Bureau of Energy Efficien	Bureau of Energy Efficiency (BEE)		79	353.2	

Climata Zana	AC			
Climate Zone	< 50.0 %	> 50.0 %		
EPI (kWh / m ² / year	.)		
Composite	86	179		
Moderate	94	179		
Warm & Humid	101	182		
Hot & Dry	90	173		

Key factors for high Energy consumption

The R&D section has once through Air conditioning system, which uses 100 % fresh air.

The facility practices 20 ACPH for pilot plant area and 12 ACPH for lab area.

Lab equipment's operates 24 x 7, which contributes for 35.0 % Energy consumption

Energy Saving projects implemented in 2020 - 2023

Voor	No. of Energy Saving	Investment	Electrical Savings	Cost Savings	Impact of SEC
Tear	projects	million INR	kWh	million INR	%
FY 2020 – 21	04	5.12	332,000	3.33	5.37
FY 2021 – 22	02	2.4	117,900	0.972	1.71
FY 2022 – 23	01	8.64	214,357	1.79	3.07

ENCON PROJECT PLANNED IN FY 2023 - 24

Title of the Project	Electrical Savings, kWh pa	Cost Savings, INR pa	Investment, INR	Status
EC Fans for AHU Systems – 24 nos. AHUs	148,300	1,258,180	5,965,507	Completed
Retrofit of existing AHU Cooling Coils and its fans – 3 Nos.	24,000	196,800	3,000,000	WIP

INNOVATIVE PROJECT CONDENSATE WATER FOR PRECOOLING AMBIENT AIR

Background to Implement Project:

- Site has 236000 CFM capacity of AHUs for serving to Pilot plants & Lab areas operating at 20 APH.
- These units operates for 24 x 7 through out the year.
- Annually Condensate water recovered from AHUs is about 3,600 kL.
- Ambient air is pumped into the system during the cycle change, this brings hot air sometimes putting additional load on the Chillers.
- Thereby it is thought to pre-cool the incoming ambient air with the condensate water before reaching the Cooling coils of AHUs.
- Accordingly, the condensate water was circulated into the coil, thereby reducing the ambient air temperature.
- This reduces the load on Chillers.

Advantages :

 Reduction on Chiller Load due to precooling of fresh air.

2) Cost avoidance(Purchase of water tankers reduced by 40%)

AF	IU Connected	= Pilot Plant 2 area
•	Project Cost	= INR 9 Lakhs
•	Energy Savings Cost Savings	= 165,000 kWh pa = INR 14 Lakhs pa

FRESH AIR PRECOOLING USING CONDENSATE RECOVERY IN 100 % FRESH AIR SYSTEM WITH 20 ACPH

Honeywell Confidential - ©2022 by Honeywell International Inc. All rights reserved.

ENERGY CAPEX – RUN AROUND COIL

Background to Implement Project:

- During High Humidity seasons to manage Relative Humidity in Lab and plant areas we have to cool the incoming fresh air to reach dew points and than reheat the same for maintaining required temperatures in the supply area.
- We have a combination of heating options including oil heaters, hot water generators and heat pumps available which consume considerable energy.

What has been done:

- Normally we are using water between 40 to 45 degree centigrade from heating source to reheat air passing from hot water coil to maintain room temperature.
- If we interconnect hot water coil with run around coil and isolate connection with exhaust unit, we can make use of incoming air temperature for increasing water temperature in hot water coil and the same is also helping to bring down incoming air temperature while passing from run around coil by using a pump for water circulation.

Schematic

AHU Connected - Pilot Plant 1, Lab 1 to 10 excluding 7

Project Cost - INR 800000 Power Savings – 99.52 kW Energy Savings – 1.07 Lakhs kWh pa Cost Savings - INR 9.13 Lakhs pa

UTILIZATION OF RENEWABLE ENERGY SOURCE

Year	Renewable Energy Source	Renewable Energy Consumption, kWh	Total Energy Consumption, kWh	% Renewable Energy	CO ₂ emission offset, tons of CO ₂
FY 2020 – 21	Inhouse - Solar	217,796	5,852,952	3.72	171.19
FY 2021 – 22	Inhouse - Solar	192,863	6,777,660	2.85	156.22
FY 2022 – 23	Inhouse - Solar	265,509	6,761,989	3.93	215.06

	Plant	Capacity	Year
1	Old Plant	165 kW	2014
	New Plant	180 kW	2022

GHG EMISSION TREND

system.

	Scope 01	Emission factor CO ₂ e / unit = 2.69	Scope 02			Total Emission
CO ₂ e year	Fuel consumed in liters	Total GHG emission in TCO ₂ e	Energy consumption in kWh	Emission factor CO ₂ e / unit	Total GHG emission in TCO ₂ e	CO_2 in tons
FY 2020 – 21	37,820	101.7	5,530,999	0.786	4,347.4	4,449.1
FY 2021 – 22	26,296	70.7	6,501,136	0.810	5,265.9	5,336.7
FY 2022 – 23	25,631	68.9	6,429,575	0.810	5,208.0	5,276.9

15

INDOOR AIR QUALITY

240 HJ 1210 H					
Test Report No. : EKOVE-656/050623 Issued To : UOP INDIA PVT. LTD. (HONEYWELL) Sector - 36 Pace City- II Gurugram (Haryana) - 122002				ill)	Issue Date : 17/06/2023
Sample	Description	: Workzone Air			
Sample	Drawn on	: 06/06/2023			
Sample	Drawn by	: EPEPL (Mr. Shakir)			
Sample					
'ampling					
ampling	g Plan & Procedure	: SOP-AAQ/15			
Analysis	Duration	: 08/06/2023 To 12/06/	2023		
Sampling	g Time	: 08 H/s.			
Ambient	: Temperature ("C)	: 27.0			
verage	Flow Rate of SPM (m"/min)	: 1.8			
Average	Flow Rate of Gases (lpm)	: 1.8			
Neather	r Condition	: Clear			
Remark	()t any)	RESULTS			
S No.	Daramatare	Test Methods	Results	linits	Permissible Limits
1	RSPM	IS: 5182 (P-23)	1.38	mo/m ³	5.0 as per OSHA
2	SPM	IS: 5182 (P-4)	3.72	mg/m ³	15.0 as per OSHA
3	Sulphur Dioxide (as SO ₂)	IS: 5182 (P-2)	< 5.0	mg/m ³	5.0 as per Factories Act, 1948
4	Nitrogen Dioxide (as NO ₂)	IS: 5182 (P-6)	< 5.0	mg/m ³	6.0 as per Factories Act, 1948
5	Carbon Monoxide (as CO)	IS: 5182 (P-10)	< 0.5	mg/m ³	55.0 as per Factories Act 1948
6	Total Volatile Organic Compounds	IS: 5182 (P-11)	< 0.1	mg/m ³	-
1. The ra The ci 2. This 10 3. The te 4. The te the cu 5. Respo	esuits given above are related to the test ustomer asked for the above tests only, est report will not be generated again, elf est report will not be used for any publicit est samples will be disposed off after 15 o ustomer. Sample received for biological to onsibility of the Laboratory is limited to the	ed sample, as received & me her wholly or in part, without viegal purpose, ays from the date of issue o ests will be destroyed after 7 e involced amount only. **End of Report*	ntioned paramet prior written perm f test report, unit days from the da	ers. Hission of the Lu Iss until speci de of issue of	iteratory. fied by test report.

IAQ is being monitored in the office area: The meter display the Carbon dioxide (CO_2) level in the office area.

UV lights are installed in the air handling units (AHU's), to improve the air quality by killing the bacteria's and fresh air dampers are also installed to improve the air quality of the office area.

Also, IAQ test being carried out for entire building through 3rd party vendor annually once.

Carbon dioxide (CO2)		
Rating	Index	CO2 ppm
Excellent	1	0 - 400
Fine	2	400 - 1000
Moderate	3	1000 - 1500
Poor	4	1500 - 2000

TEAMWORK, EMPLOYEE INVOLVEMENT & MONITORING

Kaizens

- MD reduction
- Optimization of exhaust fans in Lab 07.
- Optimized the UPS operations based on Load Conditions
- BMS Scheduling incorporated to optimize temperature requirement and OFF hours operation in alignment with the business, (which was previously done manually)

BMS Team :

- monitor & control
- scheduling of utilities (Chillers, AHUs)
- monitoring of equipment's

Viz., Transformer, DG, HVAC, UPS, Energy meters etc.,

- Energy consumption data analysis for critical equipment's
- Indoor air quality monitoring

Energy Team

- Certified Energy Managers 2 Nos.
- Weekly and monthly Energy review
- Energy Dashboard
- Dedicated Energy CAPEX budget
- Periodical Energy Training

Honeywell		OOP JOURSAON	
		LAB TEMPERATOR	
Part International			
Second Particula	CALCULATION OF	TRACK INTERACTION	The same strate and the
WILLIAM DATE	CONTRACTOR OF	1000	11.0 ¹⁰
ALCON A DECK	HITCLASH	144.00	100 C
	000014045	16.00	- 10 Mar
ACTIVITY PROPERTY.	Particular an		
CONTRACTOR CONT	IN NOT TRATING LAB	21.01	10.00
A COLUMN TWO IS NOT			

Harryson						A	IR	HA	ND	LIN	Gι	JNI	Т							
Radial Inc.			12						1.00	-		2.47		100-04			Sec.	. Area	194 J	
		1000	-	-	10.0	BARRY	Real Property lies	B.C.S.	-	-		1.11.0	-	-	10.000		-	-	Long.	LOTEL &
		2001																		
-		THE O			10.0	11.1		1111								11.51		122	1.000	
6.1	0.000					***	**			***			1.00				****			
	A 10 Million	March 1																		
		Long 1	-		1.0.1			1111					-			1111			Normal	1.000
10000		1001	-						111											
	0.000									1000			-	-				-		
	1.00																			
		Based 1			Read of the local division of the local divi														ACCURATE ON THE OWNER OF	
		1993			-						-								1000	Links

Honeywell			uor.a	окалон		
				NUMBER OF STREET		
The second second	Press of pathoese	1000	100	Section 5 Addition	1000T	
And the second second	The second second second second		Name and D	1 m m	MIND -1	
	PROVIDE A 12 PROPERTY OF	0.0	21120414	46811	980-970 I	
WELCOME	THE REPORT OF THE PARTY OF	0.0	2010/01/0	1000	2007 C	
	THE WAY PRIME IN	11.7	211000	10.010	STORE -	
	The second second second second		211004		NUMBER OF	
2540	E PERFORMANCE SALES		The second second		1000	
	PRESS OF PARTY OF	0.0	212 100 10	a second	Mart -	
Section and the section of	PRIMORY PARE OF		No. of Concession, Name	1 m m	MINT -	
THE PARTY AND A DOMESTIC AND A DOMES	PERMIT PUMPINE	0.0	No. of Concession, Name	46811	a se e	
	Para digit have	100 C	1000	A REPORT OF	1	
Bio Productor	CONTRACTOR OF THE	468111	10000	ALC: N		
Companyer.	BRIDE ARY ROME TO	-0411	Sec. 1	ALC: N	1	
CHILDREN	THE REPORT OF THE PARTY OF		Number	THE PROPERTY IN		
	PERSONAL PROPERTY AND	Action	Management of the	140000 - I	1	

17

CERTIFICATIONS

MAJOR ACHIEVEMENTS AWARD

Golder Peacock Award 2023

E2J Technology

Ethanol to Jet process aims to produce sustainable aviation fuel having lower carbon intensity via cellulosic feedstock.

THANK YOU

BACK UP SLIDES

INNOVATIVE PROJECT - CONDENSATE WATER FOR PRECOOLING AMBIENT AIR

Background to Implement Project:

- Site has 236000 CFM capacity of AHUs for serving to Pilot plants & Lab areas operating at 20 APH.
- These units operates for 24 x 7 through out the year.
- Annually Condensate water recovered from AHUs is about 3,600 kL.
- Ambient air is pumped into the system during the cycle change, this brings hot air sometimes putting additional load on the Chillers.
- Thereby it is thought to pre-cool the incoming ambient air with the condensate water before reaching the Cooling coils of AHUs.
- Accordingly, the condensate water was circulated into the coil, thereby reducing the ambient air temperature.
- This reduces the load on Chillers.

Advantages :

1) Reduction on Chiller Load due to precooling of fresh air.

2) Cost avoidance(Purchase of water tankers reduced by 40%)

AH	IU Connected	= Pilot Plant 2 area
•	Project Cost	= INR 9 Lakhs
•	Energy Savings Cost Savings	= 165,000 kWh = INR 14 Lakhs

AHU 2A & 2B (170000+17000)

= 34000 CFM or 16.04 m3/s
$h_{\rm s} = c_{\rm \rho} \rho q dt \tag{1}$
where $h_s = sensible heat (kW)$
c _p = <u>specific heat of air</u> (1.006 kJ/kg °C)
ρ = <u>density of air</u> (1.202 kg/m³)
<i>q</i> = air volume flow (<i>m</i> ³/s)
dt = temperature difference (°C)
h _s = (1.006 kJ/kg °C) (1.202 kg/m ³) (16.04 m ³ /s
= 77.61 (kW) x24 x 90 = 167,644 kWh

FRESH AIR PRECOOLING USING CONDENSATE RECOVERY IN 100 % FRESH AIR SYSTEM WITH 20 ACPH

Honeywell Confidential - @2019 by Honeywell International Inc. All rights reserved.

ENERGY CAPEX – RUN AROUND COIL

Background to Implement Project:

- During High Humidity seasons to manage Relative Humidity in Lab and plant areas we have to cool the incoming fresh air to reach dew points and than reheat the same for maintaining required temperatures in the supply area.
- We have a combination of heating options including oil heaters, hot water generators and heat pumps available which consume considerable energy.

What has been done:

- Normally we are using water between 40 to 45 degree centigrade from heating source to reheat air passing from hot water coil to maintain room temperature.
- If we interconnect hot water coil with run around coil and isolate connection with exhaust unit, we can make use of incoming air temperature for increasing water temperature in hot water coil and the same is also helping to bring down incoming air temperature while passing from run around coil by using a pump for water circulation.

Schematic

AHU Connected - Pilot Plant 1, Lab 1 to 10 excluding 7

	Project Cost - INR 800000
	Power Savings – 99.52 kW
	Energy Savings – 1.07 Lakhs kWh pa
	Cost Savings - INR 9.13 Lakhs pa
	AHU 3A, 3B, 1A, 1B
((21000+11300+11300)
-	= 43600 CFM or 20.57 m3/s
Į	$h_{\rm s} = c_p \rho q dt \tag{1}$
	where h _s = sensible heat (kW)
(c _p = <u>specific heat of air</u> (1.006 kJ/kg °C)
1	o = <u>density of air</u> (1.202 kg/m³)
(q = air volume flow (m³/s)
	dt = temperature difference (°C)
	$h_s = (1.006 \text{ kJ/kg }^\circ\text{C}) (1.202 \text{ kg/m}^3) (20.57 \text{ m}^3/s) ((16 ^\circ\text{C}) - (12 ^\circ\text{C}))$

= 99.52 (kW)